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Minirhizotron systems consist of clear plastic
tubes, which are typically inserted into the soil
prior to planting in line with the crop row and at
an angle to the soil surface (Fig 1A), along with a
boom-mounted camera with which the growing
root system is imaged (Fig 1B). Minirhizotron
studies thus measure the distribution of crop
roots across the soil profile and its evolution
through time, under field conditions and with
minimal distortion to the root system. This makes
them unique among platforms and methods for
studying roots.

The resulting images – which can number in the
10’s of thousands in even a moderately sized
study - are then digitally “traced” to produce
spatially- and temporally- referenced measures
of root length and diameter, among others (Fig
2A). These data are thus doubly-repeated
measures, with very high serial correlations in
both dimensions, although differencing can be
used to reduce, if not eliminate, temporal
autocorrelation (Fig 2B)(Gelman & Hill, 2006).
Finally, the data are typically aggregated into
depth classes prior to analysis (e.g., Zurweller et
al., 2018). This introduces the modifiable areal

Introduction
unit problem (MAUP), in which estimates and
inferences are conditional on arbitrary choices
regarding the size and location of the areal units
(i.e., depth classes)(Jelinski & Wu, 1996). It is also
not clear from previous research how the choice
of depth class size may interact with spatial- and
temporal-autocorrelation to affect type 1 error
rates, or how these and the magnitude of the
effect at one level may affect statistical power
when data are analyzed on a different, larger
scale. Given the cost associated with collecting
and tracing the images, it is important to ensure
the analytical methods are as efficient as possible.

Figure 1
(A) Minirhizotron System (Image 
credit: Rewald & Ephrath, 2013) 

(B) Example minirhizotron photo 
(Image credit: Roland & Na, 2016) 

Figure 2
(A) Example measures
of root length from a
single minirhizotron

(B) Example measures
from a minirhizotron
after differencing
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Simulated measures of crop root growth were
drawn from a multivariate t distribution with
one degree of freedom. Specifically, the
following formulae were used to simulate the
data in R (see Table 1 for explanation and factor
levels):

𝑌 ~ 𝑡1 𝜇, Σ

𝜇 = 𝑂 𝑜𝑟 𝜇 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝐸)

Σ = ρ𝑠
|𝑑𝑠| ⊗ρ𝑡

|𝑑𝑡|

Where |ds| is an 80x80 matrix of distances in
space and |dt| is a 5x5 matrix of distances in
time. Four replicates were generated for each
simulation. The data from each replicate for a

given time point was then averaged over one of 6
depth class sizes (Table 1). One thousand simulated
data sets were generated for each treatment
combination. These simulated data sets were then
analyzed in SAS proc mixed, with depth class, time
point and their interaction treated as fixed effects.
The R side effects were modeled as an anisotropic
spatial power correlation structure. Results of the
type III tests of fixed effects and covariance
parameter estimates were saved and re-exported
to R for analysis, with true positives and false
negatives both modeled as binomially distributed
and estimated via a generalized linear model.

1) To determine whether and to what extent the choice of depth
class size affects type I error rates in minirhizotron studies, and
to characterize the degree to which this effect is a function of
the magnitude of spatial and/or temporal autocorrelation in the
measurements.

2) To determine whether and to what extent the choice of depth
class affects statistical power in minirhizotron studies, and to
characterize the degree to which this effect is a function of both
the spatial and/or temporal autocorrelation in the
measurements as well as the magnitude of the effect size.

3) To determine, if possible, the optimal scale of spatial
aggregation in minirhizotron studies.

Factor Symbol Factor Levels or 
Dimensions

Temporal 
Correlation

ρt 0, 0.3

Spatial 
Correlation

ρs 0, 0.3, 0.5, 0.7, 0.9

Effect Size Ratio E 1, 3, 6

Samples per 
Depth Class

4, 5, 8, 10, 16, 20*

Table 1: Treatment factors and levels employed 
in the study.

Although the effect of depth class was statistically significant with regard
to the depth x time point interaction, it did not have any practical impact
on type I error rates, regardless of the degree of spatial or temporal
autocorrelation: in all instances, type I error rates were kept below the
nominal 0.05 rate (results not shown).
Power, however, was heavily impacted by the magnitude of the effect size,
the degree of spatial autocorrelation, and the choice of depth class size
(Figure 3). Specifically, there is a pronounced loss of power as the size of
the depth classes is increased, and this is exacerbated when spatial
autocorrelation is high and the true effect size modest.
These findings suggest that analyzing data on a scale larger than that at
which the effects and spatial correlation are manifest can have deleterious
impact on statistical power.

* Four samples per depth class corresponds to 
20 depth classes. Twenty samples per depth 
class corresponds to 4 depth classes.

Figure 3: Statistical power to detect differences among depth classes as a 
function of effect size, spatial autocorrelation and spatial aggregation
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